Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.831
Filtrar
1.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664830

RESUMO

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Assuntos
Dissulfiram , Neoplasias Pulmonares , Metaloproteinase 2 da Matriz , Nanopartículas , Neovascularização Patológica , Neoplasias de Mama Triplo Negativas , Dissulfiram/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Metaloproteinase 2 da Matriz/metabolismo , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Nanopartículas/química , Neovascularização Patológica/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Reposicionamento de Medicamentos , Ondas Ultrassônicas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico
2.
Cureus ; 16(3): e56846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659558

RESUMO

Background Sivelestat is a potent and specific neutrophil elastase inhibitor. It is clinically used in treating lung injury and respiratory distress syndrome. This engaged us to undertake the present study in which sivelestat was studied as an anti-inflammatory and anti-viral agent. Methodology The docking study of sivelestat on matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), chikungunya virus nonstructural protein-2 (CVnsP2) protease, and influenza A (H1N9) virus neuraminidase was assessed using the Chemistry at Harvard Macromolecular Mechanics (CHARMM) Dock (CDOCK) method. Furthermore, molecular physicochemical; bioactivity; absorption, distribution, metabolism, and excretion (ADME); toxicity; and Search Tool for Interacting Chemicals (STITCH) analyses were performed by using the Molinspiration (Molinspiration Cheminformatics, Slovensky Grob, Slovak Republic), SwissADME SwissADME (Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Switzerland), pkCSM (University of Melbourne, Melbourne, Australia), and STITCH-free online tools. Results The molecular physicochemical assessment of the ligand (sivelestat) showed no (zero) violation and agreed with the thumb rule of five, otherwise known as Lipinski's rule of five. ADME prediction of the ligand (sivelestat) is shown to possess a low gastrointestinal absorption (GIA) property. Similarly, toxicity analysis of the ligand (sivelestat) is predicted to have a hepatotoxicity effect. STITCH analysis reveals that the ligand (sivelestat) has exhibited interactions with the three human proteins. Conclusions The present molecular docking studies showed that the ligand (sivelestat) has successfully docked with all four enzymes of interest. Hence, the current finding has provided a good understanding of sivelestat as an effective suppressor activity against all four enzymes: MMP-2, MMP-9, CVnsP2 protease, and influenza neuraminidase.

3.
World J Gastrointest Oncol ; 16(4): 1547-1563, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660652

RESUMO

BACKGROUND: Increasing data indicated that long noncoding RNAs (lncRNAs) were directly or indirectly involved in the occurrence and development of tumors, including hepatocellular carcinoma (HCC). Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues, but its role in HCC progression is unclear. Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes. AIM: To study the role of ultrasound microbubbles (UTMBs) mediated HAND2-AS1 in the progression of HCC, in order to provide a new reference for the treatment of HCC. METHODS: In vitro, we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs, and detected cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) by cell counting kit-8 assay, flow cytometry, Transwell invasion assay and Western blotting, respectively. In addition, we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior. Next, the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) overexpression vector, and we detected cell proliferation, apoptosis, invasion and EMT. In vivo, we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability. RESULTS: We found that UTMBs carrying HAND2-AS1 restricted cell proliferation, invasion, and EMT, encouraged apoptosis, and HAND2-AS1 silencing eliminated the effect of UTMBs. Additionally, miR-873-5p targets the gene HAND2-AS1, which also targets the 3'UTR of TIMP2. And miR-873-5p mimic counteracted the impact of HAND2-AS1. Further, miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs. We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase (MMP) 2/MMP9. In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice. CONCLUSION: LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.

4.
Biosensors (Basel) ; 14(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38667174

RESUMO

A highly sensitive and selective electrogenerated chemiluminescence (ECL) biosensor was developed for the determination of matrix metalloproteinase 3 (MMP-3) in serum via the target-induced cleavage of an oligopeptide. One ECL probe (named as Ir-peptide) was synthesized by covalently linking a new cyclometalated iridium(III) complex ([(3-pba)2Ir(bpy-COOH)](PF6)) (3-pba = 3-(2-pyridyl) benzaldehyde, bpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid) with an oligopeptide (CGVPLSLTMGKGGK). An ECL biosensor was fabricated by firstly casting Nafion and gold nanoparticles (AuNPs) on a glassy carbon electrode and then self-assembling both of the ECL probes, 6-mercapto-1-hexanol and zwitterionic peptide, on the electrode surface, from which the AuNPs could be used to amplify the ECL signal and Ir-peptide could serve as an ECL probe to detect the MMP-3. Thanks to the MMP-3-induced cleavage of the oligopeptide contributing to the decrease in ECL intensity and the amplification of the ECL signal using AuNPs, the ECL biosensor could selectively and sensitively quantify MMP-3 in the concentration range of 10-150 ng·mL-1 and with both a limit of quantification (26.7 ng·mL-1) and a limit of detection (8.0 ng·mL-1) via one-step recognition. In addition, the developed ECL biosensor showed good performance in the quantization of MMP-3 in serum samples, with a recovery of 92.6% ± 2.8%-105.6% ± 5.0%. An increased level of MMP-3 was found in the serum of rheumatoid arthritis patients compared with that of healthy people. This work provides a sensitive and selective biosensing method for the detection of MMP-3 in human serum, which is promising in the identification of patients with rheumatoid arthritis.


Assuntos
Técnicas Biossensoriais , Ouro , Medições Luminescentes , Metaloproteinase 3 da Matriz , Nanopartículas Metálicas , Oligopeptídeos , Humanos , Metaloproteinase 3 da Matriz/sangue , Ouro/química , Nanopartículas Metálicas/química , Luminescência , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas
6.
Curr Med Sci ; 44(2): 369-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619683

RESUMO

OBJECTIVE: Matrix metalloproteinase 13 (MMP13) is an extracellular matrix protease that affects the progression of atherosclerotic plaques and arterial thrombi by degrading collagens, modifying protein structures and regulating inflammatory responses, but its role in deep vein thrombosis (DVT) has not been determined. The purpose of this study was to investigate the potential effects of MMP13 and MMP13-related genes on the formation of DVT. METHODS: We altered the expression level of MMP13 in vivo and conducted a transcriptome study to examine the expression and relationship between MMP13 and MMP13-related genes in a mouse model of DVT. After screening genes possibly related to MMP13 in DVT mice, the expression levels of candidate genes in human umbilical vein endothelial cells (HUVECs) and the venous wall were evaluated. The effect of MMP13 on platelet aggregation in HUVECs was investigated in vitro. RESULTS: Among the differentially expressed genes, interleukin 1 beta, podoplanin (Pdpn), and factor VIII von Willebrand factor (F8VWF) were selected for analysis in mice. When MMP13 was inhibited, the expression level of PDPN decreased significantly in vitro. In HUVECs, overexpression of MMP13 led to an increase in the expression level of PDPN and induced platelet aggregation, while transfection of PDPN-siRNA weakened the ability of MMP13 to increase platelet aggregation. CONCLUSIONS: Inhibiting the expression of MMP13 could reduce the burden of DVT in mice. The mechanism involves downregulating the expression of Pdpn through MMP13, which could provide a novel gene target for DVT diagnosis and treatment.


Assuntos
Trombose Venosa , Camundongos , Humanos , Animais , Trombose Venosa/genética , Metaloproteinase 13 da Matriz/genética , Modelos Animais de Doenças , Agregação Plaquetária , Células Endoteliais da Veia Umbilical Humana/metabolismo
7.
Neurocrit Care ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561586

RESUMO

BACKGROUND: We aimed to investigate the associations of macrophage migration inhibitory factor (MIF), toll-like receptors 2 and 4 (TLR2/4), and matrix metalloproteinase 9 (MMP9) with 3-month poor outcome, death, and malignant cerebral edema (MCE) in patients with large hemispheric infarction (LHI). METHODS: Patients with LHI within 24 h of onset were enrolled consecutively. Serum MIF, TLR2/4, and MMP9 concentrations on admission were measured. Poor outcome was defined as a modified Rankin Scale score of ≥ 3 at 3 months. MCE was defined as a decreased level of consciousness, anisocoria and midline shift > 5 mm or basal cistern effacement, or indications for decompressive craniectomy during hospitalization. The cutoff values for MIF/MMP9 were obtained from the receiver operating characteristic curve. RESULTS: Of the 130 patients with LHI enrolled, 90 patients (69.2%) had 3-month poor outcome, and MCE occurred in 55 patients (42.3%). Patients with serum MIF concentrations ≤ 7.82 ng/mL for predicting 3-month poor outcome [adjusted odds ratio (OR) 2.827, 95% confidence interval (CI) 1.144-6.990, p = 0.024] also distinguished death (adjusted OR 4.329, 95% CI 1.841-10.178, p = 0.001). Similarly, MMP9 concentrations ≤ 46.56 ng/mL for predicting 3-month poor outcome (adjusted OR 2.814, 95% CI 1.236-6.406, p = 0.014) also distinguished 3-month death (adjusted OR 3.845, 95% CI 1.534-9.637, p = 0.004). CONCLUSIONS: Lower serum MIF and MMP9 concentrations at an early stage were independently associated with 3-month poor outcomes and death in patients with LHI. These findings need further confirmation in larger sample studies.

8.
J Proteome Res ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647137

RESUMO

Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.

9.
Talanta ; 274: 126079, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608631

RESUMO

Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.

10.
Ann Vasc Surg ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609009

RESUMO

BACKGROUND: Studies have linked matrix metalloproteinases (MMPs) to both abdominal and thoracic aortic aneurysms (TAA and AAA). The precise MMPs entailed in this procedure, however, were still unknown. This study used a two-sample Mendelian randomization (MR) analysis to look into the causal relationship between MMPs and the risk of AA. MMP and aortic aneurysm METHODS: Eight MMPs, including MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-12, and MMP-13, were found among people of European ancestry with accessible genome-wide association studies (GWAS). We employed the findings from genome-wide association studies (GWAS) for eight MMPs, and TAA and AAA from the FinnGen consortiums (3,201 cases and 317,899 controls, respectively) were used in a two-sample MR analysis. The primary method of analysis for MR was the inverse variance weighted method (IVW), along with analyses of heterogeneity and horizontal pleiotropy. 31 SNPs connected to MMP were retrieved. RESULTS: IVW demonstrated a negative causal association between TAA and AAA and serum MMP-12 levels. The incidence of TAA decreased by 1.031% for every 1ng/mL increase in serum MMP-12 [odds ratio OR=0.897, 95% confidence interval (CI): 0.831-0.968, P=0.005]. The incidence of AAA fell by 1.653% (OR=0.835, 95% CI: 0.752-0.926, P =0.001) for every 1ng/mL increase in serum MMP-12. There was no horizontal pleiotropy or heterogeneity in the MR data (P > 0.05). CONCLUSION: The levels of TAA and AAA and serum MMP-12 are causally related. MMP-12 is a factor that reduces the risk of AAA and TTA. Our study suggested that MMP-12 level is causally associated with a decreased risk of TAA and AAA.

11.
Nutrients ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612961

RESUMO

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Assuntos
Gelatinases , Metaloproteinase 9 da Matriz , Humanos , Adolescente , Metaloproteinase 2 da Matriz , Cloreto de Sódio , Cloreto de Sódio na Dieta , HDL-Colesterol , Endopeptidases
12.
Artigo em Inglês | MEDLINE | ID: mdl-38633565

RESUMO

Background: Airway remodeling is a significant pathological characteristic of chronic obstructive pulmonary disease (COPD). In recent years, hypoxia-inducible factor 1-α (HIF-1α), a member of the hypoxia-inducible factor protein family, has gained attention. However, the potential correlation between HIF-1α and COPD airway remodeling remains unclear. Objective: This study explored the expression patterns of HIF-1α in patients with COPD and its association with airway remodelling. This investigation aims to furnish novel insights for the clinical identification of prospective therapeutic targets for ameliorating COPD-related airway remodelling. Patients and Methods: A total of 88 subjects were included, consisting of 28 controls and 60 COPD patients. Various staining methods were employed to observe the pathological changes in airway tissues. Immunohistochemistry was utilized to detect the expression of HIF-1α and MMP9 (matrix metalloproteinase 9) in airway tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration in serum of HIF-1α and MMP9. Computed tomography (CT) airway parameters were measured in all participants to assess airway remodeling. The relationship between serum HIF-1α and MMP9 concentrations and airway parameters was analyzed. Results: Staining of airway structures in COPD patients revealed significant pathological changes associated with airway remodelling, including mixed cilia and subepithelial fibrosis. The expression of HIF-1α and MMP9 was significantly higher in both human airway tissue and serum compared to controls. Chest CT scans exhibited typical imaging features of airway remodeling and increased airway parameters. Conclusion: The findings suggest a correlation between increased HIF-1α expression and COPD airway remodelling. This study provides novel evidence that HIF-1α may be a potential biomarker for airway remodelling in COPD patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Remodelação das Vias Aéreas , Metaloproteinase 9 da Matriz , Biomarcadores , Subunidade alfa do Fator 1 Induzível por Hipóxia
13.
Cureus ; 16(3): e56417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38638796

RESUMO

BACKGROUND: Matrix metalloproteinase-7 (MMP7) plays multiple roles in different stages of tumor development. Elevated MMP7 activity has been reported in ovarian cancer. Single nucleotide polymorphism (SNP) of promoter sites of the MMP7 gene has been shown to cause alteration in gene expression, hence resulting in changes in susceptibility to various diseases and tumor development. METHODS: The current study evaluated the association of epithelial ovarian cancer risk with MMP7 promoter site -181A>G polymorphism in the population of eastern India. The present case-control study included 64 histopathologically confirmed cases of epithelial ovarian cancer and 100 control subjects. The MMP7 -181A/G polymorphism was identified using polymerase chain reaction-restriction fragment length polymorphism. The association between genotypes and epithelial ovarian cancer risk was analyzed by odds ratio (OR) with a 95% confidence interval. RESULTS: The frequencies of AA, AG, and GG genotypes in ovarian cancer cases were 37.5%, 46.9%, and 15.6%, respectively, while that of control subjects were 56%, 36%, and 8%, respectively, in the study population. By taking the wild-type AA genotype as a reference, it was found that genotype GG was associated with a significant risk for epithelial ovarian cancer (OR: 2.92). Frequency distribution of genotypes did not show any significant association with tumor characteristics like the International Federation of Gynecology and Obstetrics (FIGO) stage, histology, lymph node status, and distant metastasis. CONCLUSION: The present study demonstrated the association of MMP7 promoter site -181 GG genotype and the G allele with increased risk for epithelial ovarian cancer in the eastern Indian population.

14.
Iran J Pharm Res ; 23(1): e143703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655071

RESUMO

Background: The utilization of amorphous silica nanoparticles (SiNPs) is gaining popularity in various applications, but it poses a potential risk to human and environmental health. However, the underlying causes and mechanisms of SiNPs-induced kidney damage are still largely unknown. Objectives: This study aimed to investigate the SiNPs-induced damage in the kidney and further explore the possible mechanisms of SiNPs-induced nephrotoxicity. Methods: Thirty adult male rats were divided into 3 different groups. Rats in groups 2 and 3 were administered SiNPs at 2 dosage levels (25 and 100 mg/kg of body weight), while the rats in the control group received no treatment for 28 days. Reactive oxygen species (ROS), antioxidant enzyme activities (glutathione peroxidase [GPx], superoxide dismutase [SOD], and catalase [CAT]), glutathione (GSH) levels, and oxidation markers (such as lipid peroxidation [malondialdehyde (MDA)] and protein oxidation [protein carbonyl (PCO)]) were analyzed in the kidney tissue. Additionally, renal fibrogenesis was studied through histopathological examination and the expression levels of fibrotic biomarkers. Results: The findings revealed that in vivo treatment with SiNPs significantly triggered oxidative stress in kidney tissues in a dose-dependent manner. This was characterized by increased production of ROS, elevated levels of MDA, PCO, and nitric oxide (NO), along with a significant decline in the activities of SOD, CAT, GPx, and reduced GSH. These changes were consistent with the histopathological analysis, which indicated interstitial fibrosis with mononuclear inflammatory cell aggregation, tubular degeneration, glomerulonephritis, and glomerular atrophy. The fibrosis index was confirmed using Masson's trichrome staining. Additionally, there was a significant upregulation of fibrosis-related genes, including transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinases 2 and 9 (MMP-2/9), whereas the expression of tissue inhibitor of metalloproteinase 2 (TIMP2) was downregulated. Conclusions: This study provided a new research clue for the role of ROS and deregulated TGF-ß signaling pathway in SiNPs nephrotoxicity.

15.
Eur J Med Res ; 29(1): 225, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594750

RESUMO

BACKGROUND: Managing polytrauma victims poses a significant challenge to clinicians since applying the same therapy to patients with similar injury patterns may result in different outcomes. Using serum biomarkers hopefully allows for treating each multiple injured in the best possible individual way. Since matrix metalloproteinases (MMPs) play pivotal roles in various physiological processes, they might be a reliable tool in polytrauma care. METHODS: We evaluated 24 blunt polytrauma survivors and 12 fatalities (mean age, 44.2 years, mean ISS, 45) who were directly admitted to our Level I trauma center and stayed at the intensive care unit for at least one night. We determined their MMP3, MMP8, MMP9, MMP10, MMP12, and MMP13 serum levels at admission (day 0) and on days 1, 3, 5, 7, and 10. RESULTS: Median MMP8, MMP9, and MMP12 levels immediately rose after the polytrauma occurred; however, they significantly decreased from admission to day 1 and significantly increased from day 1 to day 10, showing similar time trajectories and (very) strong correlations between each two of the three enzyme levels assessed at the same measurement point. For a two-day lag, autocorrelations were significant for MMP8 (- 0.512) and MMP9 (- 0.302) and for cross-correlations between MMP8 and MMP9 (- 0.439), MMP8 and MMP12 (- 0.416), and MMP9 and MMP12 (- 0.307). Moreover, median MMP3, MMP10, and MMP13 levels significantly increased from admission to day 3 and significantly decreased from day 3 to day 10, showing similar time trajectories and an (almost) strong association between every 2 levels until day 7. Significant cross-correlations were detected between MMP3 and MMP10 (0.414) and MMP13 and MMP10 (0.362). Finally, the MMP10 day 0 level was identified as a predictor for in-hospital mortality. Any increase of the MMP10 level by 200 pg/mL decreased the odds of dying by 28.5%. CONCLUSIONS: The time trajectories of the highly varying individual MMP levels elucidate the involvement of these enzymes in the endogenous defense response following polytrauma. Similar time courses of MMP levels might indicate similar injury causes, whereas lead-lag effects reveal causative relations between several enzyme pairs. Finally, MMP10 abundantly released into circulation after polytrauma might have a protective effect against dying.


Assuntos
Metaloproteinase 8 da Matriz , Traumatismo Múltiplo , Humanos , Adulto , Metaloproteinase 3 da Matriz , Metaloproteinase 10 da Matriz , Metaloproteinase 9 da Matriz , Metaloproteinase 13 da Matriz , Projetos Piloto , Metaloproteinase 12 da Matriz
16.
J Cell Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38595042

RESUMO

Type 2 diabetes is linked with increased incidence and severity of osteoarthritis. The purpose of this study was to determine the effect of extracellular glucose within the normal blood glucose and hyperglycemic range on catabolic enzyme production by chondrocytes isolated from osteoarthritic (OA) and macroscopically normal (MN) human cartilage under oxygenated (18.9% oxygen) and hypoxic (1% oxygen) conditions. OA and MN chondrocytes were maintained in 4, 6, 8, or 10 mM glucose for 24 h. Glucose consumption, GLUT1 glucose transporter levels, MMP13 and ADAMTS5 production, and levels of RUNX2, a transcriptional regulator of MMP13, ADAMTS5, and GLUT1, were assessed by enzyme-linked assays, RT-qPCR and/or western blot. Under oxygenated conditions, glucose consumption and GLUT1 protein levels were higher in OA but not MN chondrocytes in 10 mM glucose compared to 4 mM. Both RNA and protein levels of MMP13 and ADAMTS5 were also higher in OA but not MN chondrocytes in 10 mM compared to 4 mM glucose under oxygenated conditions. Expression of RUNX2 was overall lower in MN than OA chondrocytes and there was no consistent effect of extracellular glucose concentration on RUNX2 levels in MN chondrocytes. However, protein (but not RNA) levels of RUNX2 were elevated in OA chondrocytes maintained in 10 mM versus 4 mM glucose under oxygenated conditions. In contrast, neither RUNX2 levels or MMP13 or ADAMTS5 expression were increased in OA chondrocytes maintained in 10 mM compared to 4 mM glucose in hypoxia. Elevated extracellular glucose leads to increased glucose consumption and increased RUNX2 protein levels, promoting production of MMP13 and ADAMTS5 by OA chondrocytes in oxygenated but not hypoxic conditions. These findings suggest that hyperglycaemia may exacerbate chondrocyte-mediated cartilage catabolism in the oxygenated superficial zone of cartilage in vivo in patients with undertreated type 2 diabetes, contributing to increased OA severity.

17.
Biomed Environ Sci ; 37(2): 146-156, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582977

RESUMO

Objective: This study aimed to explore the association of single nucleotide polymorphisms (SNP) in the matrix metalloproteinase 2 (MMP-2) signaling pathway and the risk of vascular senescence (VS). Methods: In this cross-sectional study, between May and November 2022, peripheral venous blood of 151 VS patients (case group) and 233 volunteers (control group) were collected. Fourteen SNPs were identified in five genes encoding the components of the MMP-2 signaling pathway, assessed through carotid-femoral pulse wave velocity (cfPWV), and analyzed using multivariate logistic regression. The multigene influence on the risk of VS was assessed using multifactor dimensionality reduction (MDR) and generalized multifactor dimensionality regression (GMDR) modeling. Results: Within the multivariate logistic regression models, four SNPs were screened to have significant associations with VS: chemokine (C-C motif) ligand 2 (CCL2) rs4586, MMP2 rs14070, MMP2 rs7201, and MMP2 rs1053605. Carriers of the T/C genotype of MMP2 rs14070 had a 2.17-fold increased risk of developing VS compared with those of the C/C genotype, and those of the T/T genotype had a 19.375-fold increased risk. CCL2 rs4586 and MMP-2 rs14070 exhibited the most significant interactions. Conclusion: CCL2 rs4586, MMP-2 rs14070, MMP-2 rs7201, and MMP-2 rs1053605 polymorphisms were significantly associated with the risk of VS.


Assuntos
Metaloproteinase 2 da Matriz , Polimorfismo de Nucleotídeo Único , Humanos , Estudos de Casos e Controles , Estudos Transversais , Predisposição Genética para Doença , Genótipo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Análise de Onda de Pulso , Transdução de Sinais
18.
Perit Dial Int ; : 8968608241234728, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453893

RESUMO

BACKGROUND: Periplex® is a rapid point-of-care test based on the detection of interleukin-6 (IL-6) or matrix metalloproteinase-8 (MMP-8) to diagnose peritonitis in peritoneal dialysis (PD) patients. METHODS: This single-centre study was conducted in Singapore General Hospital from 2019 to 2022. The study recruited PD patients suspected of having peritonitis. Periplex was performed at the presentation and recovery of peritonitis. Primary outcomes were sensitivity and specificity of Periplex at presentation. The positive and negative predictive values of tests were also performed. RESULTS: A total of 120 patients were included in the study. The mean age was 60.9 ± 14.9 years, 53% were male, 79% were Chinese and 47.5% had diabetes mellitus. Periplex was positive in all patients with peritonitis (n = 114); sensitivity of 100%; 95% confidence interval (CI): 100-100%. Periplex was falsely positive in three patients with non-infective eosinophilic peritonitis, resulting in a low specificity of 50%; 95% CI: 41.1-59.0%. Periplex had a positive predictive value of 97.4% and a negative predictive value of 100%. During recovery from peritonitis, Periplex had high specificity (93.6%) and negative predictive value (98.7%) to indicate the resolution of infection. MMP-8 was more sensitive than IL-6 in detecting peritonitis. Periplex was positive in all patients with peritonitis regardless of the types of PD solutions used. CONCLUSIONS: Periplex had high sensitivity, and positive and negative predictive values in the diagnosis of peritonitis can be considered as a screening tool for peritonitis. Given its high specificity and negative predictive value, it may also be used to document the resolution of peritonitis.

19.
Int Urogynecol J ; 35(4): 881-891, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488886

RESUMO

INTRODUCTION AND HYPOTHESIS: The objective was to investigate the correlation between endogenous vaginal microecological alterations and female pelvic organ prolapse (POP). METHODS: Patients who underwent vaginal hysterectomy were retrospectively analyzed as the POP group (n = 30) and the non-POP group (n = 30). The vaginal microbial metabolites and enzyme levels were tested using the dry chemoenzymatic method. The mRNA and protein expression were tested using real-time quantitative PCR and immunohistochemistry. SPSS version 25.0 and GraphPad Prism 8.0 were performed for statistical analysis. RESULTS: Compared with the non-POP group, the vaginal pH, H2O2 positivity and leukocyte esterase positivity were higher in patients with POP (all p < 0.05). Further analysis showed that patients with pelvic organ prolapse quantification (POP-Q) stage IV had higher rates of vaginal pH, H2O2 positivity and leukocyte esterase positivity than those with POP-Q stage III. Additionally, the mRNA expression of decorin (DCN), transforming growth factor beta 1 (TGF-ß1), and matrix metalloproteinase-3 (MMP-3) in uterosacral ligament tissues were higher, whereas collagen I and III were lower. Similarly, the positive expression of MMP-3 in uterosacral ligament tissue was significantly upregulated in the POP group compared with the non-POP group (p = 0.035), whereas collagen I (p = 0.004) and collagen III (p = 0.019) in uterosacral ligament tissue were significantly downregulated in the POP group. Correlation analysis revealed that there was a significant correlation between vaginal microecology and collagen metabolism. In addition, MMP-3 correlated negatively with collagen I and collagen III (p = 0.002, r = -0.533; p = 0.002, r = -0.534 respectively), whereas collagen I correlated positively with collagen III (p = 0.001, r = 0.578). CONCLUSIONS: Vaginal microecological dysbiosis affects the occurrence of female POP, which could be considered a novel therapeutic option.


Assuntos
Prolapso de Órgão Pélvico , Vagina , Feminino , Humanos , Prolapso de Órgão Pélvico/metabolismo , Pessoa de Meia-Idade , Estudos Retrospectivos , Metaloproteinase 3 da Matriz/metabolismo , Decorina/metabolismo , Decorina/genética , Idoso , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Histerectomia Vaginal , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo III/genética , RNA Mensageiro/metabolismo , Ligamentos/metabolismo , Microbiota , Adulto
20.
ACS Biomater Sci Eng ; 10(4): 2251-2269, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38450619

RESUMO

Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.


Assuntos
Diabetes Mellitus Experimental , Gelatina , Camundongos , Animais , Gelatina/farmacologia , Gelatina/química , Microesferas , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Cicatrização , Inflamação , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...